Innovative Food Processing Technologies Advances In Multiphysics Simulation Institute Of Food Technologists Series

Design and Optimization of Innovative Food Processing Techniques Assisted by Ultrasound: Developing Healthier and Sustainable Food Products is a useful tool in understanding the innovative applications derived from the use of ultrasound technology. The book is a starting point for product development, covering technological, physicochemical and nutritional perspectives, as well as the reduction of food toxics and contaminants. Divided into three parts, sections cover ultrasound usage in obtaining functional foods, extracting bioactive compounds, the improvement of food quality, ultrasound use for the development of novel applications, and more. As the definitive resource in new innovative ultrasound-based emerging processes, this book is a necessity for food scientists and technologists, nutrition researchers, and those working in the food manufacturing industry. Explores how ultrasound treatment affects nutrients and bioactive compound retention Provides a useful tool in understanding the innovative applications derived from the use of ultrasound technology Shows how ultrasound serves as a tool of new ingredients production for the food concept of tomorrow Food Processing: Principles and Applications second edition is the fully revised new edition of this best-selling food technology title. Advances in food processing continue to take place as food scientists and food engineers adapt to the challenges imposed by emerging pathogens, environmental concerns, shelf life, quality and safety, as well as the dietary needs and demands of humans. In addition to covering food processing principles that have long been essential to food quality and safety, this edition of Food Processing: Principles and Applications, unlike the former edition, covers microbial/enzyme inactivation kinetics, alternative food processing technologies as well as environmental and sustainability issues currently facing the food processing industry. The book is divided into two sections, the first focusing on principles of food processing and handling, and the second on processing technologies and applications. As a hands-on guide to the essential processing principles and their applications, covering the theoretical and applied aspects of food processing in one accessible volume, this book is a valuable tool for food industry professionals across all manufacturing sectors, and serves as a relevant primary or supplemental text for students of food science. Food Processing and Preservation Technology: Advances, Methods, and Applications confronts the challenges of food preservation by providing new research and information on the use of novel processing and preservation technologies during production, processing, and transportation in the food industry for the improvement of shelf life and the safety of foods. The book is organized in two main parts. The first section focuses on novel and nonthermal processing of food and food products. It looks at dielectric heating and ohmic heating as well as three-dimensional printing of foods and ozonization of food products. Part two delves into process interventions for food processing and preservations, discussing the applications of diverse novel food processing. The authors discuss drying technologies, advances in food fermentation technologies, mechanization of traditional indigenous products for preservation of food and safety, and different properties and concepts of bakery products. Key features: Examines different properties and attributes of some bakery foods, etc. Elucidates on novel nonthermal processing techniques and their mechanisms of actions for minimal loss of food nutrients and for food safety Discusses a variety of modern technologies that aim to reduce the spoilage of food products This volume presents valuable research on food processing, quality control, and safety measures for food products by means of novel processing and preservation technologies during production, processing, and transportation in the food industry. Food process engineering, a branch of both food science and chemical engineering, has evolved over the years since its inception and still is a rapidly changing discipline. While traditionally the main objective of food process engineering was preservation and stabilization, the focus today has shifted to enhance health aspects, flavour and taste, nutrition, sustainable production, food security and also to ensure more diversity for the increasing demand of consumers. The food industry is becoming increasingly competitive and dynamic, and strives to develop high quality, freshly prepared food products. To achieve this objective, food manufacturers are today presented with a growing array of new technologies that have the potential to improve, or replace, conventional processing technologies, to deliver higher quality and better consumer targeted food products, which meet many, if not all, of the demands of the modern consumer. These new, or innovative, technologies are in various stages of development, including some still at the R&D stage, and others that have been commercialised as alternatives to conventional processing technologies. Food process engineering comprises a series of unit operations traditionally applied in the food industry. One major component of these operations relates to the application of heat, directly or indirectly, to provide foods free from pathogenic microorganisms, but also to enhance or intensify other processes, such as extraction, separation or modification of components. The last three decades have also witnessed the advent and adaptation of several operations, processes, and techniques aimed at producing high quality foods, with minimum alteration of sensory and nutritive properties. Some of these innovative technologies have significantly reduced the thermal component in food processing, offering alternative nonthermal methods. Food Processing Technologies: A Comprehensive Review covers the latest advances in innovative and nonthermal processing, such as high pressure, pulsed electric fields, radiofrequency, high intensity pulsed light, ultrasound, irradiation and new hurdle technology. Each section will have an introductory article covering the basic principles and applications of each technology, and in-depth articles covering the currently available equipment (and/or the current state of development), food quality and safety, application to various sectors, food laws and regulations, consumer acceptance, advancements and future scope. It will also contain case studies and examples to illustrate state-of-the-art applications. Each section will serve as an excellent reference to food industry professionals involved in the processing of a wide range of food categories, e.g., meat, seafood, beverage, dairy, eggs, fruits and vegetable products, spices, herbs among others. Comprehensive: Offering readers a 'one-stop', comprehensive resource for access to a wealth of information to fully support
their research and activities in this area and a critical insight into the future direction of the field Clearly structured: Meticulously organized, with case studies, examples and illustrations of state-of-the-art applications for each processing technology, it is the ideal resource for students, researchers and professionals to find relevant information quickly and easily and understand how new and emerging technologies may be commercialized Interdisciplinary: Chapters written by academics and practitioners from various fields and regions will ensure that the knowledge within is easily understood by and applicable to a large audience Multimedia Features: Hyperlinked references and further readings, cross-references and widgets will allow readers to easily navigate a wealth of information, as well as the inclusion of various multimedia tools Inclusion in the Reference Module in Food Science will ensure that content remains perpetually up-to-date, allowing readers to access the latest authoritative information immediately

The contents of the book are divided into various chapters from Advances in Food Engineering, Developments in Food Quality and Safety, Emerging Food Processing Technologies, Innovations in Food Product Development and Developments in Food Property Analysis. The book includes topics like modelling approaches of various food processes namely drying, dehydration and absorption, quality characteristics, quality measurement and safety of food product. The book also contains topics related to emerging processing technologies for food namely ohmic heating, cold plasma, high pressure, ultrasound assisted processing etc., and development of new ingredient and food product. Some topics of the book deal with various types of properties of food such as antioxidant, physicochemical and rheological properties of food.

For nearly a century, scientific advances have fueled progress in U.S. agriculture to enable American producers to deliver safe and abundant food domestically and provide a trade surplus in bulk and high-value agricultural commodities and foods. Today, the U.S. food and agricultural enterprise faces formidable challenges that will test its long-term sustainability, competitiveness, and resilience. On its current path, future productivity in the U.S. agricultural system is likely to come with trade-offs. The success of agriculture is tied to natural systems, and these systems are showing signs of stress, even more so with the change in climate. More than a third of the food produced is unconsumed, an unacceptable loss of food and nutrients at a time of heightened global food demand. Increased food animal production to meet greater demand will generate more greenhouse gas emissions and excess animal waste. The U.S. food supply is generally secure, but is not immune to the costly and deadly shocks of continuing outbreaks of food-borne illness or to the constant threat of pests and pathogens to crops, livestock, and poultry. U.S. farmers and producers are at the front lines and will need more tools to manage the pressures they face. Science Breakthroughs to Advance Food and Agricultural Research by 2030 identifies innovative, emerging scientific advances for making the U.S. food and agricultural system more efficient, resilient, and sustainable. This report explores the availability of relatively new scientific developments across all disciplines that could accelerate progress toward these goals. It identifies the most promising scientific breakthroughs that could have the greatest positive impact on food and agriculture, and that are possible to achieve in the next decade (by 2030).

The second edition of Emerging Technologies in Food Processing presents essential, authoritative, and complete literature and research data from the past ten years. It is a complete resource offering the latest technological innovations in food processing today, and includes vital information in research and development for the food processing industry. It covers the latest advances in non-thermal processing including high pressure, pulsed electric fields, radiofrequency, high intensity pulsed light, ultrasound, irradiation, and addresses the newest hurdles in technology where extensive research has been carried out. Provides an extensive list of research sources to further research development. Presents current and thorough research results and critical reviews Includes the most recent technologies used for shelf life extension, bioprocessing simulation and optimization. The high market demand based on consumers’ trust in fish as a healthy and nutritious food resource made fish processing a very dynamic industry, spurring many innovations in processing and packaging methods. Trends in Fish Processing Technologies not only reflects what is currently new in fish processing but also points out where things are heading in this area. This book provides an overview of the modern technologies employed by the industry. It details the advances in fish processing, including high pressure processing (HPP), pulsed electric field (PEF) treatment and minimally heat processing combined with microwave (MW) and radio-frequency (RF). It provides references to food safety management systems and food safety & quality indicators for processed fish in order to achieve an adequate level of protection. Quality aspects and molecular methods for the assessment of fish and fish products integrity are introduced. Fish products reformulation trends based on sustainability principles that tackles the reduction of salt content and the use of natural antimicrobials are presented. Innovative packaging solutions for fish products are explored, detailing intelligent packaging with freshness and time-temperature indicators, applications of modified packaging atmosphere, antimicrobial bio-nanocomposite packaging materials and biodegradable edible films used as primary fish packaging. In addition to covering the current advancements in fish processing the book discusses fraud, adulteration, fair trade practices, traceability and the need for added value, clean and sustainable processing in the fish chain. Nanotechnology can be used to address challenges faced by the food and bioprocessing industries for developing and implementing improved or novel systems that can produce safer, nutritious, healthier, sustainable, and environmental-friendly food products. This book overviews the most recent advances made on the field of nanoscience and nanotechnology that significantly influenced the food industry. Advances in Processing Technologies for Bio-Based Nanosystems in Food provides a multidisciplinary review of the complex mechanisms involved in the research, development, production and legislation of food containing nanostructures systems. Features: Presents the most recent advances made in the field of nanoscience and nanotechnology as applied to the food industry Discusses innovative approaches and processing technologies Shows how nanotechnology can be used to produce safer, nutritious, healthier and sustainable and environmental-friendly food products Covers the complex mechanisms involved in the
research, development, production and legislation of food containing nanostructures. Selected examples of nanotechnology applications in food industry are shown, focusing on advanced aspects of food packaging, processing and preservation; followed by one contribution that presents the potential commercialization and the main challenges for scale-up. Comprised of 15 chapters, this book provides much-needed and up-to-date information on the use of emergent technologies in bio-based nanosystems for foods, and serves as an ideal reference for scientists, regulators, industrialists, and consumers that conduct research and development in the food processing industry.

"Multiphysics simulation of emerging food processing technologies discusses how multiphysics modeling - i.e., the simulation of the entire process comprising the actual equipment, varying process conditions and the physical properties of the food to be treated - can be applied in the development, optimization and scale-up of emerging food processing technologies and shows the most recent research outcomes to demonstrate process efficiency and the impact on scalability, safety and quality. Technologies covered include: high pressure processing, high pressure thermal sterilization, radiofrequency, microwave, ultrasound, ultraviolet, and pulsed electric fields processing. The book is targeted to food and process engineers, food technologists, equipment designers, and research and development personnel including microbiologists, both in industry and academia. Multiphysics simulation of emerging food processing technologies fully describes the importance and the methods for applying multiphysics modeling for the design, development, and application of these technologies."

This is the second publication stemming from the International Congress on Engineering in Food, the first being Food Engineering Interfaces, based on the last ICEF10. The theme of ICEF 11, held in Athens, Greece in May 2011, is "Food Process Engineering in a Changing World." The conference explored the ways food engineering contributes to the solutions of vital problems in a world of increasing population and complexity that is under the severe constraints of limited resources of raw materials, energy, and environment. The book, comprised of 32 chapters, features an interdisciplinary focus, including food materials science, engineering properties of foods, advances in food process technology, novel foods processes, functional foods, food waste engineering, food process design and economics, modeling food safety and quality, and innovation management.

Multiphysics simulation of emerging food processing technologies fully describes the importance and the methods for applying multiphysics modeling for the design, development, and application of these technologies. This book offers a comprehensive view of recent advances in food processing technologies and their applications. It is intended for researchers, food engineers, and food technologists who are interested in the development of new processing technologies and their impact on food safety, quality, and innovation management.
Reviews innovative processing techniques and recent developments in food formulation, identification, and utilization of functional ingredients Food Formulation: Novel Ingredients and Processing Techniques is a comprehensive and up-to-date account of novel food ingredients and new processing techniques used in advanced commercial food formulations. This unique volume will help students and industry professionals alike in understanding the current trends, emerging technologies, and their impact on the food formulation techniques. Contributions from leading academic and industrial experts provide readers with informed and relevant insights on using the latest technologies and production processes for new product development and reformulations. The text first describes the basis of a food formulation, including smart protein and starch ingredients, healthy ingredients such as salt and sugar replacers, and interactions within the food components. Emphasizing operational principles, the book reviews state-of-the-art 3D printing technology, encapsulation and a range of emerging technologies including high pressure, pulsed electric field, ultrasound and supercritical fluid extraction. The final chapters discuss recent developments and trends in food formulation, from foods that target allergies and intolerances, to probiotic and prebiotic food formulation designed to improve gut health. A much-needed reference on novel sourcing of food ingredients, processing technologies, and application, this book: Explores new food ingredients as well as impact of processing on ingredient interactions Describes new techniques that improve the flavor and acceptability of functional food ingredients Reviews mathematical tools used for recipe formulation, process control and consumer studies Includes regulations and legislations around tailor-made food products Food Formulation: Novel Ingredients and Processing Techniques is an invaluable resource for students, educators, researchers, food technologists, and professionals, engineers and scientists across the food industry.

Consumer-driven products have kept the food industry at the forefront of technological innovations. For example, the redefinition of the once accepted compromise between convenience and quality is just one of the current issues driving the development of new products. An overview of a range of solutions for these challenges, Innovation in Food Engineering: New Techniques and Products addresses not only new or alternative technologies but also new products, materials, and additives that have emerged as a response to current and emerging issues faced by the food industry. This book provides a comprehensive overview of modern processing technologies and their use to develop new or improved food products and ingredients that meet consumers increased demands for quality and safety. Each chapter in the Innovative Techniques section begins with a critical review of the fundamentals of the new or modified technique, its advantages, and relevant results. They include a description of the actual industrial scenario where the technique can be applied, emphasizing benefits and economical relevance of this sector. The chapters in the New Materials, Products, and Additives section identify the potential of the new or modified product, discuss its production route, and compare it with traditional alternatives. While there are many books available on both topics, this is one of the first to cover processing technologies and their use to produce new and improved food products. Written by internationally recognized experts and pioneers and comprehensive in scope, the text highlights promising techniques and remaining challenges. In the constantly changing global marketplace, keeping up with new developments is important—keeping ahead of them is essential. This book keeps you up to date on the latest technology and paves the way for future developments.

Part of the IFT (Institute of Food Technologists) series, this book discusses multiphysics modeling and its application in the development, optimization, and scale-up of emerging food processing technologies. The book covers recent research outcomes to demonstrate process efficiency and the impact on scalability, safety, and quality, and technologies including High Pressure Processing, High Pressure Thermal Sterilization, Radiofrequency, Ultrasound, Ultraviolet, and Pulsed Electric Fields Processing. Ideal for food and process engineers, food technologists, equipment designers, microbiologists, and research and development personnel, this book covers the importance and the methods for applying multiphysics modeling for the design, development, and application of these technologies.

Feeding our globally expanding population is one of the most critical challenges of our time and improving food and agricultural production efficiencies is a key factor in solving this problem. Currently, one-third of food produced for humans is wasted, and for every pound of food produced, roughly an equal amount of nonfood by-product is also generated, creating a significant environmental impact. In Integrated Processing Technologies for Food and Agricultural By-Products experts from around the world present latest developments, recognizing that while some by-products have found use as animal feed or are combusted for energy, new technologies which integrate conversion of production and processing by-products into higher-value food or nonfood products, nutraceuticals, chemicals, and energy resources will be a critical part of the transition to a more sustainable food system. Organized by agricultural crop, and focusing on those crops with maximum economic impact, each chapter describes technologies for value-added processing of by-products which can be integrated into current food production systems. Integrated Processing Technologies for Food and Agricultural By-Products is a valuable resource for industry professionals, academics, and policy-makers alike. Provides production-through-processing coverage of key agricultural crops for a thorough understanding and translational inspiration Describes and discusses major by-product sources, including physical and chemical biomass characterizations and associated variability in detail Highlights conversions accomplished through physical, biological, chemical, or thermal methods and demonstrates examples of those technologies

Green Food Processing Techniques: Preservation, Transformation and Extraction advances the ethics and practical objectives of "Green Food Processing" by offering a critical mass of research on a series of methodological and technological tools in innovative food processing techniques, along with their role in promoting the sustainable food industry. These techniques (such as microwave, ultrasound, pulse electric field, instant controlled pressure drop, supercritical fluid processing, extrusion...) lie on the frontier of food processing, food chemistry, and food microbiology, and are thus presented with tools to make preservation, transformation and extraction greener. The Food Industry constantly needs to reshape and innovate itself in order to achieve the social, financial and environmental demands of the 21st century. Green Food Processing can respond to these challenges by enhancing shelf life and the nutritional quality of food products, while at the same time reducing energy use and unit operations for processing, eliminating wastes and byproducts, reducing water use in harvesting, washing and processing, and using naturally derived ingredients. Introduces the strategic concept of Green Food Processing to meet the challenges of the future of the food industry Presents innovative techniques for green food processing that can be used in academia, and in industry in R&D and processing Brings a multidisciplinary approach, with significant contributions from eminent scientists who are actively working on Green Food Processing techniques

Probiotic and Prebiotics in Foods: Challenges, Innovations, and Advances reviews recent advances, innovations, and challenges in probiotics/prebiotics in food and beverages. The book
presents up-to-date, novel and extensive information regarding recent research and applications in probiotics and prebiotics in food. Sections address probiotics, prebiotics, paraprobiotics and postbiotics, probiotics, prebiotics and bioactive food products. The book includes valuable content on probiotics and prebiotics and their use in food as well as their role in health and disease prevention. It is an essential resource for researchers, practitioners, and students interested in the field of functional foods.

The book covers a wide range of topics, including:
- **Probiotics and Prebiotics**: The role of probiotics and prebiotics in gut health and disease prevention.
- **Functional Foods**: The development and use of functional foods in health promotion and disease prevention.
- **Applications in Specific Conditions**: The use of probiotics and prebiotics in specific conditions such as diabetes, obesity, and gut health.
- **Safety and Regulatory Issues**: The safety and regulatory aspects of probiotics and prebiotics in food.

Methodologies and Applications

The book includes chapters on various methodologies and applications, such as:
- **Microbial Composition and Function**: Understanding the microbial composition and function in the gut.
- **Functional Food Formulations**: The formulation of probiotics and prebiotics in functional foods.
- **Clinical Trials**: The use of probiotics and prebiotics in clinical trials.

Conclusion

Innovative Technologies for Food Preservation: Inactivation of Spoilage and Pathogenic Microorganisms covers the latest advances in non-thermal processing, including mechanical processes (such as high-pressure processing, ultrasound, ohmic heating, pulse electric field, pulse light, membrane processing, cryogenic freezing, and cold plasma), non-thermal processing technologies such as high-pressure processing, ultrasound, ohmic heating, pulse electric field, pulse light, membrane processing, cryogenic freezing, and cold plasma processing technologies. The book focuses both on fundamentals and on recent advances in non-thermal food processing technologies. It also provides information with the description and results of research into new emerging technologies for both the academy and industry. Key features: Presents engineering focus on non-thermal food processing technologies. Discusses sub-classification for recent trends and relevant industry information/examples. Different current research-oriented results are included as a key parameter. Covers high-pressure processing, pulse electric field, pulse light technology, irradiation, and ultrasonic techniques. Includes mathematical modeling and numerical simulations. Food Processing: Advances in Non-Thermal Technologies is aimed at graduate students, professionals in food engineering, food technology, and biological systems engineering.

Innovative Technologies for Food Preservation: Inactivation of Spoilage and Pathogenic Microorganisms covers the latest advances in non-thermal processing, including mechanical processes (such as high-pressure processing, high pressure homogenization, high hydrodynamic pressure processing, pressurized fluids); electromagnetic technologies (like pulsed electric fields, high voltage electrical discharges, Ohmic heating, chemical electrolysis, microwaves, radiofrequency, cold plasma, UV-light); acoustic technologies (ultrasound, shockwaves); innovative chemical processing technologies (ozone, chlorine dioxide, electrolysis, oxidized water) and others like membrane filtration and dense phase CO2. The title also focuses on understanding the effects of such processing technologies on inactivation of the most relevant pathogenic and spoilage microorganisms to ensure food safety and stability. Over the course of the 20th century, the interest and demand for the development and application of new food preservation methods has increased significantly. The research in the last 50 years has produced various innovative food processing technologies and the use of new technologies for inactivation of spoilage and/or pathogenic microorganisms will depend on several factors. At this stage of development there is a need to better understand the mechanisms that govern microbial inactivation as induced by new and innovative processing technologies, as well as suitable and effective conditions for inactivating the microorganism. Serves as a summary of relevant spoilage and pathogenic microorganisms for different foods as influenced by the application of innovative technologies for their preservation Provides readers with an in-depth understanding on how effective innovative processing technologies are for controlling...
Innovative Food Processing Technologies: Advances in Multiphysics Simulation Institute Of Food Technologists Series

An in-depth look at new and emerging technologies for non-alcoholic beverage manufacturing The non-alcoholic beverage market is the fastest growing segment of the functional food industry. Infrared technologies utilised in food preservation sectors

Part One looks at innovation in the food supply chain, while Part Two covers emerging technologies in food processing and packaging. Subsequent sections explore innovative food preservation technologies in themed chapters and sustainability and future research needs in food manufacturing. Addresses issues such as energy reduction and rising costs in food manufacture Assesses current supply chain technologies and the emerging advancements in the field, including key chapters on food processing technologies Covers the complete food manufacturing scale, compiling significant research from academics and important industrial figures

Food can rapidly spoil due to growth of microorganisms, and traditional methods of food preservation such as drying, canning, salting, curing, and chemical preservation can affect the quality of the food. Nowadays, various non-thermal processing techniques can be employed in grain processing industries to combat this. They include pulsed electric field processing, high pressure processing, ultrasonic processing, cold plasma processing, and more. Such techniques will satisfy consumer demand for delivering wholesome food products to the market. Non-Thermal Processing Technologies for the Grain Industry addresses these many new non-thermal food processing techniques that are used during grain processing and minimize microbial contamination and spoilage. Key Features: Explains the mechanism involved in application of cold plasma techniques for grain processing, and its strategy for inactivation of microbes by using this technique Deals with the effect of incorporation of electric pulses on quality aspects of various grain based beverage products. Details the innovative high pressure processing techniques used for extraction of antioxidant from food grains Explores the safety issues and applications of non-thermal food processing techniques This book will benefit food scientists, food process engineers, academicians, students, as well as anyone else in the food industry by providing in-depth knowledge and emerging trends about non-thermal processing techniques in various grain-based food processing industries. This volume covers new trends in developments in food science, including preparation, characterization, morphology, properties, and recyclability. The volume considers food quality, shelf life, and manufacturing in conjunction with human nutrition, diet, and health as well as the ever-growing demand for the supply and production of healthier foods. Distinguished scientists specializing in various disciplines discuss basic studies, applications, recent advances, difficulties, and breakthroughs in the field. The volume includes informative discussions and new research on food formulations, manufacturing techniques, biodegradable flexible packaging, packaged foods, beverages, fruits and vegetable processing, fisheries, milk and milk products, frozen food and thermo processing, grain processing, meat and poultry processing, rheological characteristics of foods, heat exchangers in the food industry, food and health (including natural cures and food supplements), spice and spice processing, and more. Recent developments have enabled the production of in-pack processed foods with improved sensory quality as well as new types of heat-preserved products packaged in innovative containers. This book reviews these advances in packaging formats and processing technologies and their application to produce higher quality, safer foods. Opening chapters cover innovative can designs and non-traditional packaging formats, such as retort pouches. The second part of the book reviews the developments in processing and process control technology required by newer types of packaging. Part three addresses the safety of in-pack processed foods, including concerns over pathogens and hazardous compounds in processed foods. The book concludes with chapters on novel methods to optimise the quality of particular types of in-pack processed foods such as fruit and vegetables, meat, poultry and fish products. In-pack processed foods: improving quality is a valuable reference for professionals involved in the manufacture of this important group of food products and those researching in this area. Reviews advances in packaging formats and processing technologies Covers innovative can designs and non-traditional packaging formats Examines the safety of in-pack processed foods, including concerns over pathogens

Interest in cereals and other healthy grains has increased considerably in recent years, driving the cereal processing industry to develop new processing technologies that meet consumer demands for sustainable and nutritious cereal products. Innovative Processing Technologies for Healthy Grains is the first dedicated reference to focus on advances in cereal processing and bio-refineries of cereals and pseudocereals, presenting a broad overview of all aspects of both conventional and novel processing techniques and methods. Featuring contributions from leading researchers and academics, this unique volume examines the selection and characteristics of raw ingredients, new and emerging processing technologies, novel cereal-based products, and global trends in cereal and pseudocereal use, processing and consumption. The text offers balanced coverage of advances in both the development and processing of cereal and pseudocereal products, exploring topics including gluten-free products, cereal-based animal feed, health and wellness trends in healthy grain consumption, bioaccessibility and bioavailability of nutritional compounds, gluten-free products, and the environmental impact of processed healthy grains. This timely and comprehensive volume: Focusses on innovative cereal processing and bio-refineries of cereals and pseudocereals Provides informed perspectives on the current global trends in cereal and pseudocereal use, processing and consumption Describes the characteristics of healthy grains and their production, nutritional value, and utilization Explains the origin, production, processing, and functional ingredients of pseudocereals Reviews healthy grain products such as cereal-based beverages, fortified grain-based products, and cereal-based products with bioactive benefits Part of Wiley's IIFST Advances in Food Science series Innovative Processing Technologies for Healthy Grains is an essential resource for food scientists, technologists, researchers, and other professionals working in the grain industry including processing professionals and technologists interested in the development of novel processing technologies to produce higher quality and safer foods. This book will also be of interest to all food scientists and technologists working in the manufacturing and use of healthy grains. Innovative Food Processing TechnologiesA Comprehensive ReviewElsevier

Novel food processing technologies have significant potential to improve product quality and process efficiency. Commercialisation of new products and processes brings exciting opportunities and interesting challenges. Case studies in novel food processing technologies provides insightful, first-hand experiences of many pioneering experts involved in the development and commercialisation of foods produced by novel processing technologies. Part one presents case studies of commercial products preserved with the leading nonthermal technologies of high pressure processing and pulsed electric field processing. Part two broadens the case histories to include alternative technologies, such as dense phase carbon dioxide, ozone, ultrasonics, cool plasma, and infrared technologies, which are applied in food preservation sectors ranging from fresh produce, to juices, to disinfestation. Part three covers novel food preservation techniques using natural antimicrobials, novel food packaging technologies, and oxygen depleted storage techniques. Part four contains case studies of innovations in retort technology, microwave heating, and predictive modelling that compare thermal versus non-thermal processes, and evaluate an accelerated 3-year challenge test. With its team of distinguished editors and international contributors, Case studies in novel food processing technologies is an essential reference for professionals in industry, academia, and government involved in all aspects of research, development and commercialisation of novel food processing technologies. Provides insightful, first-hand experiences of many pioneering experts involved in the development and commercialisation of foods produced by novel processing technologies Presents case studies of commercial products preserved with the leading nonthermal technologies of high pressure processing and pulsed electric field processing Features alternative novel techniques, such as dense phase carbon dioxide, ozone, ultrasonics, cool plasma, and infrared technologies utilised in food preservation sectors

An in-depth look at new and emerging technologies for non-alcoholic beverage manufacturing The non-alcoholic beverage market is the fastest growing segment of the functional food industry
consistent with beverage consumption trends generally, the demand among consumers of these products is for high-nutrient drinks made from natural, healthy ingredients, free of synthetic preservatives and artificial flavor and color enhancers. Such drinks require specialized knowledge of exotic ingredients, novel processing techniques, and various functional ingredients. The latest addition to the critically acclaimed IFST Advances in Food Science series this book brings together edited contributions from internationally recognized experts in their fields who offer insights and analysis of the latest developments in non-alcoholic beverage manufacture. Topics covered include juices made from pome fruits, citrus fruits, prunus fruits, vegetables, exotic fruits, berries, juice blends and non-alcoholic beverages, including grain-based beverages, soups and functional beverages. Waste and by-products generated in juice and non-alcoholic beverage sector are also addressed. Offers fresh insight and analysis of the latest developments in non-alcoholic beverage manufacture from leading international experts Covers all product segments of the non-alcoholic beverage market, including juices, vegetable blends, grain-based drinks, and alternative beverages Details novel thermal and non-thermal technologies that ensure high-quality nutrient retention while extending product shelf life Written with the full support of The Institute of Food Science and Technology (IFST), the leading qualifying body for food professionals in Europe Innovative Technologies in Beverage Processing is a valuable reference/working resource for food scientists and engineers working in the non-alcoholic beverage industry, as well as academic researchers in industrial food processing and nutrition.

Food processing, a branch of both food science and chemical engineering, has evolved over the years since its inception and still is a rapidly changing discipline. While traditionally the main objective of food process engineering was preservation and stabilization, the focus today has shifted to enhance health aspects, flavour and taste, nutrition, sustainable production, food security and also to ensure more diversity for the increasing demand of consumers. The food industry is becoming increasingly competitive and dynamic, and strives to develop high quality, freshly prepared food products. To achieve this objective, food manufacturers are today presented with a growing array of new technologies that have the potential to improve, or replace, conventional processing technologies, to deliver higher quality and better consumer targeted food products, which meet many, if not all, of the demands of the modern consumer. These new, or innovative, technologies are in various stages of development, including some still at the R&D stage, and others that have been commercialised as alternatives to conventional processing technologies. Food process engineering comprises a series of unit operations traditionally applied in the food industry. One major component of these operations relates to the application of heat, directly or indirectly, to provide foods free from pathogenic microorganisms, but also to enhance or intensify other processes, such as extraction, separation or modification of components. The last three decades have also witnessed the advent and adaptation of several operations, processes, and techniques aimed at producing high quality foods, with minimum alteration of sensory and nutritive properties. Some of these innovative technologies have significantly reduced the thermal component in food processing, offering alternative nonthermal methods. Food Processing Technologies: A Comprehensive Review covers the latest advances in innovative and nonthermal processing, such as high pressure, pulsed electric fields, radiofrequency, high intensity pulsed light, ultrasound, irradiation and new hurdle technology. Each section will have an introductory article covering the basic principles and applications of each technology, and in-depth articles covering the currently available equipment (and/or the current state of development), food quality and safety, application to various sectors, food laws and regulations, consumer acceptance, advancements and future scope. It will also contain case studies and examples to illustrate state-of-the-art applications. Each section will serve as an excellent reference to food industry professionals involved in the processing of a wide range of food categories, e.g., meat, seafood, beverage, dairy, eggs, fruits and vegetable products, spices, herbs among others.

Innovation Strategies for the Food Industry: Tools for Implementation, Second Edition explores how process technologies and innovations are implemented in the food industry, by i.e., detecting problems and providing answers to questions of modern applications. As in all science sectors, Internet and big data have brought a renaissance of changes in the way academics and researchers communicate and collaborate, and in the way that the food industry develops. The new edition covers emerging skills of food technologists and the integration of food science and technology knowledge into the food chain. This handbook is ideal for all relevant actors in the food sector (professors, researchers, students and professionals) as well as for anyone dealing with food science and technology, new products development and food industry. Includes the latest trend on training requirements for the agro-food industry Highlights new technical skills and profiles of modern food scientists and technologists for professional development Presents new case studies to support research activities in the food sector, including product and process innovation Covers topics on collaboration, entrepreneurship, Big Data and the Internet of Things.

One of the main concerns of the food industry is the need for high-quality fresh fruits and fruit products with good sensory quality, long shelf life, and high nutritional value. To meet these demands, new processing technologies are under investigation and development. Advances in Fruit Processing Technologies incorporates fundamentals in food processing as well as the advances made in recent years to improve final product quality. With contributions from a panel of international researchers who present a blend of classical and emerging technologies, the book explores: Ozone, ultrasound, irradiation, pulsed electric field, vacuum frying, and high-pressure processing Ultraviolet and membrane processing Enzymatic maceration, freeze concentration, and refrigeration The effect of processing on sensory characteristics and nutritional value New trends in modified atmosphere packaging The use of fruit juices as a vehicle for probiotic microorganisms Prebiotic oligosaccharides as an alternative for dairy products Incorporating a series of case studies on the application of various technologies, the book reviews their advantages, limitations, successes, and failures. The contributors also examine the implications of food processing technologies on waste production, energy use, and resource requirements. This comprehensive survey of methods for optimizing fruit quality is an ideal resource for those in the fruit and vegetable industry looking for innovations that can improve efficiency, reduce waste, and cut costs.

Food Technology Disruptions covers the latest disruptions in the food industry, such as the Internet of Things, digital technologies, modern applications like 3D printing, bacterial sensors in food packaging, electronic noses for food authentication, and artificial intelligence. With additional discussions on innovative distribution and delivery of food and consumer acceptance of food disruptions, this book is an essential resource for food scientists, technologists, engineers, agriculturalists, chemists, product developers, researchers, academics and professionals working in the food industry. While innovations play an important role in food production, disruptive technologies are a revolutionary type of innovation that can displace an established technology and
shake up the industry...or create a completely new industry. Currently, digital technologies and smart applications lead innovations in the food sector in order to optimize the food supply chain and to develop and deliver tailor-made food products to consumers with new eating habits. Covers digital technologies in agriculture, food production and food processing, modern eating habits, personalized nutrition, and relevant innovative food products. Brings alternative protein sources, novel functional foods and artificial meat. Discusses the Internet of Things, digital technologies and modern applications like 3D printing, smart packaging and smart food distribution.